MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis

نویسندگان

  • Bikram Datt Pant
  • Anja Buhtz
  • Julia Kehr
  • Wolf-Rüdiger Scheible
چکیده

The presence of microRNA species in plant phloem sap suggests potential signaling roles by long-distance regulation of gene expression. Proof for such a role for a phloem-mobile microRNA is lacking. Here we show that phosphate (Pi) starvation-induced microRNA399 (miR399) is present in the phloem sap of two diverse plant species, rapeseed and pumpkin, and levels are strongly and specifically increased in phloem sap during Pi deprivation. By performing micro-grafting experiments using Arabidopsis, we further show that chimeric plants constitutively over-expressing miR399 in the shoot accumulate mature miR399 species to very high levels in their wild-type roots, while corresponding primary transcripts are virtually absent in roots, demonstrating shoot-to-root transport. The chimeric plants exhibit (i) down-regulation of the miR399 target transcript (PHO2), which encodes a critical component for maintenance of Pi homeostasis, in the wild-type root, and (ii) Pi accumulation in the shoot, which is the phenotype of pho2 mutants, miR399 over-expressers or chimeric plants with a genetic knock-out of PHO2 in the root. Hence the transported miR399 molecules retain biological activity. This is a demonstration of systemic control of a biological process, i.e. maintenance of plant Pi homeostasis, by a phloem-mobile microRNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systemic signaling and local sensing of phosphate in common bean: cross-talk between photosynthate and microRNA399.

Shoot-to-root communication is crucial for plant acclimation to phosphorus (P)-deficiency. Both sugars and miRNAs have been implicated as potential signal molecules transported through phloem from shoot to root for the regulation of gene expression and Pi uptake in the root. By studying the expression patterns of both a serine/threonine phosphatase gene (PvHAD1) and microRNA399 (miR399) in comm...

متن کامل

Regulatory network of microRNA399 and PHO2 by systemic signaling.

Recently, we showed that microRNA399s (miR399s) control inorganic phosphate (Pi) homeostasis by regulating the expression of PHO2 encoding a ubiquitin-conjugating E2 enzyme 24. Arabidopsis (Arabidopsis thaliana) plants overexpressing miR399 or the pho2 mutant overaccumulate Pi in shoots. The association of Pi translocation and coexpression of miR399s and PHO2 in vascular tissues suggests their ...

متن کامل

Phosphate Accumulation in Plants: Signaling

The availability of mineral nutrients is vital for plant growth and survival, and, as such, plants have evolved elaborate mechanisms to maximize the sequestering and uptake of scarce minerals. This is especially true in the case of phosphorus (P), which, when limiting, induces changes in root architecture to aid in the uptake of this mineral nutrient. How this limiting condition is sensed and p...

متن کامل

High Impact Phosphate Accumulation in Plants: Signaling

The availability of mineral nutrients is vital for plant growth and survival, and, as such, plants have evolved elaborate mechanisms to maximize the sequestering and uptake of scarce minerals. This is especially true in the case of phosphorus (P), which, when limiting, induces changes in root architecture to aid in the uptake of this mineral nutrient. How this limiting condition is sensed and p...

متن کامل

High Impact Phosphate Accumulation in Plants: Signaling

The availability of mineral nutrients is vital for plant growth and survival, and, as such, plants have evolved elaborate mechanisms to maximize the sequestering and uptake of scarce minerals. This is especially true in the case of phosphorus (P), which, when limiting, induces changes in root architecture to aid in the uptake of this mineral nutrient. How this limiting condition is sensed and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant Journal

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2008